Hjorth Analysis of General Polish Group Actions

Ohad Drucker (Hebrew U.)

January 28, 2014

Ohad Drucker (Hebrew U.) Hjorth Analysis of General Polish Group Actions

- - 4 回 ト - 4 回 ト

Polish Spaces

 A Polish Topology is a separable topology induced by a complete metric. A Polish Space is a topological space whose topology is polish.

(日) (日) (日)

Polish Spaces

- A Polish Topology is a separable topology induced by a complete metric. A Polish Space is a topological space whose topology is polish.
- A subspace of a Polish space is Polish if and only it is G_{δ} .

(日) (日) (日)

Polish Spaces

- A Polish Topology is a separable topology induced by a complete metric. A Polish Space is a topological space whose topology is polish.
- A subspace of a Polish space is Polish if and only it is G_{δ} .
- The product of a countable collection of Polish spaces is Polish. In particular, ω^ω and 2^ω are both Polish.

▲圖▶ ▲屋▶ ▲屋▶

• A *Polish Group* is a topological group whose topology is polish.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

æ

- A *Polish Group* is a topological group whose topology is polish.
- One important example is S_∞, the group of permutations of natural numbers.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

- A *Polish Group* is a topological group whose topology is polish.
- One important example is *S*_∞, the group of permutations of natural numbers.
- A continuous action of a Polish group G on a Polish space X is called a *Polish action*. We will denote by E^X_G the induced orbit equivalence relation on X.

向下 イヨト イヨト

- A *Polish Group* is a topological group whose topology is polish.
- One important example is S_∞, the group of permutations of natural numbers.
- A continuous action of a Polish group G on a Polish space X is called a *Polish action*. We will denote by E^X_G the induced orbit equivalence relation on X.
- The orbit equivalence relation E^X_G is analytic, but not always Borel.

・日・ ・ヨ・ ・ヨ・

Let L be a countable relational language, L = (R_i)_{i∈ω}, for R_i an n_i - ary relation.

- (日) (三) (三) (三) (三)

- Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i ary relation.
- Let $Mod(\mathcal{L})$ be the collection of countable \mathcal{L} models.

(本部) (本語) (本語) (語)

- Let \mathcal{L} be a countable relational language, $\mathcal{L} = (R_i)_{i \in \omega}$, for R_i an n_i ary relation.
- Let $Mod(\mathcal{L})$ be the collection of countable \mathcal{L} models.
- $Mod(\mathcal{L})$ inherits the Polish topology of $\prod_{i \in \omega} 2^{\omega^{n_i}}$.

- (日) (三) (三) (三) (三)

- Let L be a countable relational language, L = (R_i)_{i∈ω}, for R_i an n_i ary relation.
- Let *Mod*(*L*) be the collection of countable *L* models.
- $Mod(\mathcal{L})$ inherits the Polish topology of $\prod_{i \in \omega} 2^{\omega^{n_i}}$.
- This is exactly the topology generated by

$$A_{\phi,\bar{a}} = \{\mathcal{M} : \mathcal{M} \models \phi(\bar{a})\}.$$

- 本部 ト イヨ ト - - ヨ

• S_{∞} acts continuously on $Mod(\mathcal{L})$ in the following way:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

S_∞ acts continuously on Mod(L) in the following way:
For a relation R:

$$R^{g \cdot M}(a_1, ..., a_n) \iff R^M(g^{-1}(a_1), ..., g^{-1}(a_n))$$

▲圖▶ ▲屋▶ ▲屋▶

S_∞ acts continuously on Mod(L) in the following way:
For a relation R:

$$R^{g \cdot M}(a_1, ..., a_n) \iff R^M(g^{-1}(a_1), ..., g^{-1}(a_n))$$

• The induced orbit equivalence relation is $\simeq_{\mathcal{L}}$.

▲圖▶ ▲屋▶ ▲屋▶

Definition

Let $\mathcal{M}, \mathcal{N} \in Mod(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

Ohad Drucker (Hebrew U.) Hjorth Analysis of General Polish Group Actions

イロト イヨト イヨト イヨト

æ

Definition

Let $\mathcal{M}, \mathcal{N} \in \mathit{Mod}(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

•
$$(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$$
 if for every $\phi(\bar{x})$ atomic,
 $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b}).$

・ロト ・回ト ・ヨト ・ヨト

æ

Definition

Let $\mathcal{M}, \mathcal{N} \in Mod(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

•
$$(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$$
 if for every $\phi(\bar{x})$ atomic,
 $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b}).$

• $(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{N}, \bar{b})$ if for every $c \in \omega$ there is $d \in \omega$ s.t. $(\mathcal{M}, \bar{a}^{\frown} c) \equiv_{\alpha} (\mathcal{N}, \bar{b}^{\frown} d)$ and for every $d \in \omega$ there is $c \in \omega$ s.t. $(\mathcal{N}, \bar{b}^{\frown} d) \equiv_{\alpha} (\mathcal{M}, \bar{a}^{\frown} c)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\mathcal{M}, \mathcal{N} \in Mod(\mathcal{L})$, $\bar{a}, \bar{b} \in \omega^{<\omega}$ of the same length.

•
$$(\mathcal{M}, \bar{a}) \equiv_0 (\mathcal{N}, \bar{b})$$
 if for every $\phi(\bar{x})$ atomic,
 $\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{N} \models \phi(\bar{b}).$

•
$$(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{N}, \bar{b})$$
 if for every $c \in \omega$ there is $d \in \omega$ s.t.
 $(\mathcal{M}, \bar{a}^{\frown} c) \equiv_{\alpha} (\mathcal{N}, \bar{b}^{\frown} d)$ and for every $d \in \omega$ there is $c \in \omega$
s.t. $(\mathcal{N}, \bar{b}^{\frown} d) \equiv_{\alpha} (\mathcal{M}, \bar{a}^{\frown} c)$.

For
$$\lambda$$
 limit, $(\mathcal{M}, \bar{a}) \equiv_{\lambda} (\mathcal{N}, \bar{b})$ if for every $\alpha < \lambda$,
 $(\mathcal{M}, \bar{a}) \equiv_{\alpha} (\mathcal{N}, \bar{b})$.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Definition

$$\mathcal{M} \equiv_{\alpha} \mathcal{N} \text{ if } (\mathcal{M}, \emptyset) \equiv_{\alpha} (\mathcal{N}, \emptyset).$$

イロト イヨト イヨト イヨト

Э

Definition

$$\mathcal{M} \equiv_{\alpha} \mathcal{N} \text{ if } (\mathcal{M}, \emptyset) \equiv_{\alpha} (\mathcal{N}, \emptyset).$$

Given
$$\mathcal{M} \in Mod(\mathcal{L})$$
, there is $\alpha < \omega_1$ such that if $(\mathcal{M}, \bar{a}) \equiv_{\alpha} (\mathcal{M}, \bar{b})$ then $(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{M}, \bar{b})$.

イロト イヨト イヨト イヨト

Э

Definition

$$\mathcal{M} \equiv_{\alpha} \mathcal{N} \text{ if } (\mathcal{M}, \emptyset) \equiv_{\alpha} (\mathcal{N}, \emptyset).$$

Given
$$\mathcal{M} \in Mod(\mathcal{L})$$
, there is $\alpha < \omega_1$ such that if $(\mathcal{M}, \bar{a}) \equiv_{\alpha} (\mathcal{M}, \bar{b})$ then $(\mathcal{M}, \bar{a}) \equiv_{\alpha+1} (\mathcal{M}, \bar{b})$.

Definition

For $\mathcal{M} \in Mod(\mathcal{L})$, $\delta(\mathcal{M})$, the *Scott rank* of \mathcal{M} , is the least such α .

イロン イヨン イヨン イヨン

э

• The basic properties of Scott Analysis are the following:

(人間) (人) (人) (人) (人)

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

・回 ・ ・ ヨ ・ ・ ヨ ・

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

$$2 \simeq_{\mathcal{L}} = \bigcap_{\alpha < \omega_1} \equiv_{\alpha} .$$

・回 ・ ・ ヨ ・ ・ ヨ ・

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

2
$$\simeq_{\mathcal{L}} = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$$

3 The function $\delta: X \to (\omega_1, <)$ is invariant under the action of G and Borel, which is:

・日・ ・ヨ・ ・ヨ・

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

2
$$\simeq_{\mathcal{L}} = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$$

3 The function $\delta: X \to (\omega_1, <)$ is invariant under the action of G and Borel, which is:

$$\{\mathcal{M} : \delta(\mathcal{M}) \leq \alpha\}.$$

is Borel.

(日本) (日本) (日本)

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

2
$$\simeq_{\mathcal{L}} = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$$

3 The function $\delta: X \to (\omega_1, <)$ is invariant under the action of G and Borel, which is:

$$\{\mathcal{M} : \delta(\mathcal{M}) \leq \alpha\}.$$

is Borel.

4 Given $\mathcal{M} \in Mod(\mathcal{L})$, for every $\mathcal{N} \in Mod(\mathcal{L})$:

・ 回 ・ ・ ヨ ・ ・ ヨ ・

- The basic properties of Scott Analysis are the following:
 - **1** \equiv_{α} is a decreasing sequence of Borel and S_{∞} invariant equivalence relations.

2
$$\simeq_{\mathcal{L}} = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$$

3 The function δ : X → (ω₁, <) is invariant under the action of G and Borel, which is:</p>

$$\{\mathcal{M} : \delta(\mathcal{M}) \leq \alpha\}.$$

is Borel.

4 Given
$$\mathcal{M} \in Mod(\mathcal{L})$$
, for every $\mathcal{N} \in Mod(\mathcal{L})$:

$$\mathcal{N} \equiv_{\delta(\mathcal{M})+\omega} \mathcal{M} \implies \mathcal{M} \simeq \mathcal{N}.$$

(日本) (日本) (日本)

Theorem (Becker - Kechris)

 $\simeq_{\mathcal{L}}$ is Borel if and only if there is an $\alpha < \omega_1$ such that for every $\mathcal{M} \in Mod(\mathcal{L}), \ \delta(\mathcal{M}) < \alpha$

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- 4 回 2 - 4 □ 2 - 4 □

æ

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:
- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under *G*.

白 ト イヨ ト イヨト

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:
- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under G.
- 2 $E_G^X = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:
- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under *G*.
- 2 $E_G^X = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$.
- 3 A function $\delta: X \to (\omega_1, <)$ which is Borel and G invariant.

- 4 同 6 4 日 6 4 日 6

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:
- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under *G*.
- 2 $E_G^X = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$.
- **3** A function $\delta: X \to (\omega_1, <)$ which is Borel and G invariant.
- 4 There is an $\alpha < \omega_1$ such that for every $x \in X$ and for every $y \in X$:

イロン イヨン イヨン イヨン

Questions

Problem

Generalize Scott analysis, or, find a topological version of Scott analysis.

- Is there a Scott analysis of Polish actions, which is, for every (G, X) a Polish action:
- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under *G*.
- 2 $E_G^X = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$.
- **3** A function $\delta: X \to (\omega_1, <)$ which is Borel and G invariant.
- 4 There is an $\alpha < \omega_1$ such that for every $x \in X$ and for every $y \in X$:

$$x \equiv_{\delta(x)+\alpha} y \Longrightarrow \quad x \ E_G^X \ y.$$

Better yet, can we find a Scott analysis of Polish actions such that:

▲ □ → ▲ □ → ▲ □ →

æ

Better yet, can we find a Scott analysis of Polish actions such that:

Theorem

 E_G^X is Borel if and only if there is an α such that for every $x \in X$, $\delta(x) \leq \alpha$.

伺い イヨト イヨト

Better yet, can we find a Scott analysis of Polish actions such that:

Theorem

 E_G^X is Borel if and only if there is an α such that for every $x \in X$, $\delta(x) \leq \alpha$.

Question (Hjorth)

Let α be a countable ordinal. Is the following set Borel:

$$\mathbb{A}_{\alpha} = \{ x : [x] \text{ is } \mathbf{\Pi}_{\beta}^{\mathbf{0}} \text{ for } \beta < \alpha + \omega \}$$

- 4 回 と 4 き と 4 き と

Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

- Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .
- For α < ω₁, we define a relation ≤_α between pairs of an element of x and an open subset of G:

・回 と く ヨ と く ヨ と

- Let (G, X) be a general Polish action. Fix \mathbb{P} the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .
- For α < ω₁, we define a relation ≤_α between pairs of an element of x and an open subset of G:

Definition

 $(x, U) \leq_{\alpha} (y, W)$ if and only if for every $A = \Pi_{\alpha}^{0}$ set, if $W \Vdash g^{*}y \in A$ then $U \Vdash g^{*}x \in A$.

▲圖▶ ★ 国▶ ★ 国▶

- Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .
- For α < ω₁, we define a relation ≤_α between pairs of an element of x and an open subset of G:

Definition

 $(x, U) \leq_{\alpha} (y, W)$ if and only if for every $A = \Pi_{\alpha}^{0}$ set, if $W \Vdash g^{*}y \in A$ then $U \Vdash g^{*}x \in A$.

Proposition

```
1 (x, U) \leq_1 (y, W) if and only if \overline{U \cdot x} \subseteq \overline{W \cdot y}.
```

- Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .
- For α < ω₁, we define a relation ≤_α between pairs of an element of x and an open subset of G:

Definition

 $(x, U) \leq_{\alpha} (y, W)$ if and only if for every $A = \Pi_{\alpha}^{0}$ set, if $W \Vdash g^{*}y \in A$ then $U \Vdash g^{*}x \in A$.

Proposition

- 1 $(x, U) \leq_1 (y, W)$ if and only if $\overline{U \cdot x} \subseteq \overline{W \cdot y}$.
- 2 \leq_{α} is reflexive and transitive. The sequence $\langle \leq_{\alpha} : \alpha < \omega_1 \rangle$ is decreasing.

- Let (G, X) be a general Polish action. Fix ℙ the poset of nonempty open subsets of G.
- g^* denotes the generic element added by \mathbb{P} .
- For α < ω₁, we define a relation ≤_α between pairs of an element of x and an open subset of G:

Definition

 $(x, U) \leq_{\alpha} (y, W)$ if and only if for every $A = \Pi_{\alpha}^{0}$ set, if $W \Vdash g^{*}y \in A$ then $U \Vdash g^{*}x \in A$.

Proposition

- 1 $(x, U) \leq_1 (y, W)$ if and only if $\overline{U \cdot x} \subseteq \overline{W \cdot y}$.
- 2 \leq_{α} is reflexive and transitive. The sequence $\langle \leq_{\alpha} : \alpha < \omega_1 \rangle$ is decreasing.
- \leq_{α} is Borel.

Definition

Let x_0, x_1 in X, $\alpha < \omega_1$. $x_0 \equiv_{\alpha} x_1$ iff for all $V_1 \subseteq G$ nonempty and open there is $V_0 \subseteq G$ nonempty and open such that

 $(x_0, V_0) \leq_{\alpha} (x_1, V_1),$

and vice versa:

(4 回) (4 回) (4 回)

Definition

Let x_0, x_1 in X, $\alpha < \omega_1$. $x_0 \equiv_{\alpha} x_1$ iff for all $V_1 \subseteq G$ nonempty and open there is $V_0 \subseteq G$ nonempty and open such that

 $(x_0, V_0) \leq_{\alpha} (x_1, V_1),$

and vice versa: For V_0 there is V_1 such that

 $(x_1, V_1) \leq_{\alpha} (x_0, V_0).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let x_0, x_1 in X, $\alpha < \omega_1$. $x_0 \equiv_{\alpha} x_1$ iff for all $V_1 \subseteq G$ nonempty and open there is $V_0 \subseteq G$ nonempty and open such that

 $(x_0, V_0) \leq_\alpha (x_1, V_1),$

and vice versa: For V_0 there is V_1 such that

 $(x_1, V_1) \leq_{\alpha} (x_0, V_0).$

Proposition

 \equiv_{α} is a Borel and G - invariant equivalence relation.

Proposition

Suppose $A \subseteq X$ is an invariant $\Pi^{\mathbf{0}}_{\alpha}$ set, and $x \equiv_{\alpha} y$. Then $x \in A \iff y \in A$.

・ 同 ト ・ 臣 ト ・ 臣 ト

æ

Proposition

Suppose $A \subseteq X$ is an invariant Π^0_{α} set, and $x \equiv_{\alpha} y$. Then $x \in A \iff y \in A$.

Proof.

Assume $x \in A$ for $A \in \Pi^{\mathbf{0}}_{\alpha}$ invariant set.

イロト イポト イヨト イヨト

э

Proposition

```
Suppose A \subseteq X is an invariant \Pi^0_{\alpha} set, and x \equiv_{\alpha} y. Then x \in A \iff y \in A.
```

Proof.

- Assume $x \in A$ for $A \in \Pi^{\mathbf{0}}_{\alpha}$ invariant set.
- As A is invariant, $G \Vdash g^* \cdot x \in A$.

イロト イポト イヨト イヨト

э

Proposition

Suppose
$$A \subseteq X$$
 is an invariant $\Pi^{\mathbf{0}}_{\alpha}$ set, and $x \equiv_{\alpha} y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for $A \in \Pi^{\mathbf{0}}_{\alpha}$ invariant set.
- As A is invariant, $G \Vdash g^* \cdot x \in A$.
- Since $x \equiv_{\alpha} y$, there is a non empty and open W such that $(y, W) \leq_{\alpha} (x, G)$.

イロト イヨト イヨト イヨト

æ

Proposition

Suppose
$$A \subseteq X$$
 is an invariant $\Pi^{\mathbf{0}}_{\alpha}$ set, and $x \equiv_{\alpha} y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for $A = \Pi^{\mathbf{0}}_{\alpha}$ invariant set.
- As A is invariant, $G \Vdash g^* \cdot x \in A$.
- Since $x \equiv_{\alpha} y$, there is a non empty and open W such that $(y, W) \leq_{\alpha} (x, G)$.
- By the definition and the above, W ⊢ g* · y ∈ A. In particular, there is a g such that g · y ∈ A.

イロト イポト イヨト イヨト

Proposition

Suppose
$$A \subseteq X$$
 is an invariant $\Pi^{\mathbf{0}}_{\alpha}$ set, and $x \equiv_{\alpha} y$. Then $x \in A \iff y \in A$.

Proof.

- Assume $x \in A$ for $A = \Pi^{\mathbf{0}}_{\alpha}$ invariant set.
- As A is invariant, $G \Vdash g^* \cdot x \in A$.
- Since $x \equiv_{\alpha} y$, there is a non empty and open W such that $(y, W) \leq_{\alpha} (x, G)$.
- By the definition and the above, W ⊢ g* · y ∈ A. In particular, there is a g such that g · y ∈ A.
- By the invariance of A, y must be in A.

イロト イポト イヨト イヨト

æ

- 1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under G.
- $E_G^X = \bigcap_{\alpha < \omega_1} \equiv_\alpha .$
- **3** A function $\delta: X \to (\omega_1, <)$ which is Borel and G invariant.
- 4 There is an $\alpha < \omega_1$ such that for every $x \in X$ and for every $y \in X$:

$$x \equiv_{\delta(x)+\alpha} y \Longrightarrow x E_G^X y.$$

(4月) (4日) (4日)

Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

(1日) (1日) (日)

Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

$$(x, U) \leq_{\alpha} (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).$$

Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

$$(x, U) \leq_{\alpha} (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).$$

Proposition

Hjorth rank is G invariant and Borel. In fact:

Definition

For $x \in X$, let $\delta(x)$ be the least α such that for every $U, V \subseteq G$ open and nonempty, and every $\alpha < \omega_1$:

$$(x, U) \leq_{\alpha} (x, V) \Rightarrow (x, U) \leq_{\alpha+1} (x, V).$$

Proposition

Hjorth rank is G invariant and Borel. In fact: For every countable ordinal α :

 $\{x : \delta(x) \le \alpha\}$

is $\Pi^{0}_{\alpha+k(\alpha)}$, for $k(\alpha) \in \omega$.

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

- 4 回 2 - 4 回 2 - 4 回 2 - 4

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ there is a natural number m such that $[x] = \{y : y \equiv_{\delta(x)+m} x\}.$

▲圖▶ ★ 国▶ ★ 国▶

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ there is a natural number m such that $[x] = \{y : y \equiv_{\delta(x)+m} x\}.$

Proof.

• The set
$$\{z : \delta(z) \le \delta(x)\}$$
 is $\Pi^0_{\delta(x)+m}$ for some $m \in \omega$.

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ there is a natural number m such that $[x] = \{y : y \equiv_{\delta(x)+m} x\}.$

Proof.

- The set $\{z : \delta(z) \leq \delta(x)\}$ is $\Pi^0_{\delta(x)+m}$ for some $m \in \omega$.
- So if $y \equiv_{\delta(x)+m} x$ then $\delta(y) \le \delta(x)$.

Proposition

If $\delta(x_0), \delta(x_1) \leq \delta$ and $x_0 \equiv_{\delta+1} x_1$, then x_0 and x_1 are orbit equivalent.

Theorem

For every $x \in X$ there is a natural number m such that $[x] = \{y : y \equiv_{\delta(x)+m} x\}.$

Proof.

- The set $\{z : \delta(z) \le \delta(x)\}$ is $\Pi^0_{\delta(x)+m}$ for some $m \in \omega$.
- So if $y \equiv_{\delta(x)+m} x$ then $\delta(y) \leq \delta(x)$.
- Hence if x and y are $\delta(x) + m + 1$ equivalent, they are orbit equivalent.

1 A decreasing sequence \equiv_{α} of Borel equivalence relations which are invariant under G.

2
$$E_G^X = \bigcap_{\alpha < \omega_1} \equiv_{\alpha}$$
.

- **3** A function $\delta: X \to (\omega_1, <)$ which is Borel and G invariant.
- 4 There is an $\alpha < \omega_1$ such that for every $x \in X$ and for every $y \in X$:

$$x \equiv_{\delta(x)+\alpha} y \Longrightarrow x E_G^X y.$$

In our case, $\alpha = \omega$.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

What about the boundedness principle ?

Theorem

 E_G^X is Borel if and only if there is an α such that for every $x \in X$, $\delta(x) \leq \alpha$.

(4回) (日) (日)

• Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?

(4回) (4回) (4回)

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.

(4回) (4回) (4回)

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.
- $G \cdot x$ is Borel.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.
- *G* · *x* is Borel.
- $F \cdot x$ is not necessarily Borel for F closed.

・ 回 ・ ・ ヨ ・ ・ ヨ ・

- Let $B \subseteq G$ be a Borel set, $x \in X$. What is the complexity of $B \cdot x$?
- $B \cdot x$ is analytic.
- *G* · *x* is Borel.
- $F \cdot x$ is not necessarily Borel for F closed.

Proposition

 $B \cdot x$ is Borel if and only if $B \cdot G_x$ is Borel. In particular, $U \cdot x$ is Borel, for U open.

(4月) (4日) (4日)

Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.

イロン イヨン イヨン イヨン

æ

Complexity of $B \cdot x$

Proposition

If $G \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$ for $\alpha \geq 1$ then for every open U, $U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.

Sketch of proof

• $\alpha = 1$: $G \cdot x$ is G_{δ} .

イロト イヨト イヨト イヨト

3

Proposition

If $G \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$ for $\alpha \geq 1$ then for every open $U, U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.

Sketch of proof

- $\alpha = 1$: $G \cdot x$ is G_{δ} .
- By a theorem of Effros, the canonical bijection $G/G_x \to G \cdot x$ is a homeomorphism.

イロン イヨン イヨン イヨン

Proposition

If $G \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$ for $\alpha \geq 1$ then for every open $U, U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.

Sketch of proof

- $\alpha = 1$: $G \cdot x$ is G_{δ} .
- By a theorem of Effros, the canonical bijection $G/G_x \to G \cdot x$ is a homeomorphism.
- Then $U \cdot x$ is open in $G \cdot x$, hence G_{δ} in X.

イロン イヨン イヨン イヨン

Complexity of $B \cdot x$

Sketch of proof (ctd.)

For arbitrary α , $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle \Sigma_{\alpha}^{\mathbf{0}}$ sets.

イロン イ部ン イヨン イヨン 三日

Sketch of proof (ctd.)

- For arbitrary α , $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle \Sigma_{\alpha}^0$ sets.
- We then apply a Theorem of Hjorth to refine the topology of X to a topology in which $G \cdot x$ is G_{δ} .

- 4 同 6 4 日 6 4 日 6

Sketch of proof (ctd.)

- For arbitrary α , $G \cdot x = \bigcap_{n \in \omega} B_n$. for $\langle B_n : n \in \omega \rangle \Sigma_{\alpha}^0$ sets.
- We then apply a Theorem of Hjorth to refine the topology of X to a topology in which $G \cdot x$ is G_{δ} .
- Using the case $\alpha = 1$, $U \cdot x$ is G_{δ} in the new topology, and hence $U \cdot x$ was $\Pi^{0}_{\alpha+1}$ in the original topology.

Let (G, X) be a Polish action. Then E_G^X is Borel if and only if there is an α such that for every x, $\delta(x) \leq \alpha$.

(4回) (1日) (日)

Let (G, X) be a Polish action. Then E_G^X is Borel if and only if there is an α such that for every x, $\delta(x) \leq \alpha$.

Proof.

If for every x,
$$\delta(x) \leq \alpha$$
, then $\equiv_{\alpha+\omega} = E_G^X$.

イロト イヨト イヨト イヨト

Let (G, X) be a Polish action. Then E_G^X is Borel if and only if there is an α such that for every x, $\delta(x) \leq \alpha$.

Proof.

- If for every x, $\delta(x) \leq \alpha$, then $\equiv_{\alpha+\omega} = E_G^X$.
- If E_G^X is Borel, there is an $\alpha < \omega_1$ such that all orbits are $\Pi_{\alpha+1}^0$.

(4月) (4日) (4日)

Let (G, X) be a Polish action. Then E_G^X is Borel if and only if there is an α such that for every x, $\delta(x) \leq \alpha$.

Proof.

- If for every x, $\delta(x) \leq \alpha$, then $\equiv_{\alpha+\omega} = E_G^X$.
- If E_G^X is Borel, there is an $\alpha < \omega_1$ such that all orbits are $\Pi_{\alpha+1}^0$.
- For all $U \subseteq G$ open, $U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.

(4月) (4日) (4日)

Let (G, X) be a Polish action. Then E_G^X is Borel if and only if there is an α such that for every x, $\delta(x) \leq \alpha$.

Proof.

- If for every x, $\delta(x) \leq \alpha$, then $\equiv_{\alpha+\omega} = E_G^X$.
- If E_G^X is Borel, there is an $\alpha < \omega_1$ such that all orbits are $\Pi_{\alpha+1}^0$.
- For all $U \subseteq G$ open, $U \cdot x$ is $\Pi^{\mathbf{0}}_{\alpha+1}$.
- It turns out that in this case, $\delta(x) \le \alpha + 1$.

- 4 同 6 4 日 6 4 日 6

Let X be a Polish G - Space. There is a sequence $\{A_{\zeta}\}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

- 4 同 6 4 日 6 4 日 6

Let X be a Polish G - Space. There is a sequence $\{A_{\zeta}\}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

1 A_{ζ} is invariant, and $\bigcup_{\zeta < \omega_1} A_{\zeta} = X$.

(4 回) (4 回) (4 回)

Let X be a Polish G - Space. There is a sequence $\{A_{\zeta}\}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

1
$$A_{\zeta}$$
 is invariant, and $\bigcup_{\zeta < \omega_1} A_{\zeta} = X$.

2
$$E_G^X \upharpoonright A_\zeta$$
 is Borel

Let X be a Polish G - Space. There is a sequence $\{A_{\zeta}\}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

1
$$A_{\zeta}$$
 is invariant, and $\bigcup_{\zeta < \omega_1} A_{\zeta} = X$.

2
$$E_G^X \upharpoonright A_\zeta$$
 is Borel.

3 (Boundedness) If $A \subseteq X$ is Borel invariant and $E_G^X \upharpoonright A$ is Borel, then $A \subseteq \bigcup_{\zeta < \alpha} A_{\zeta}$ for some $\alpha < \omega_1$.

(4 回) (4 回) (4 回)

Let X be a Polish G - Space. There is a sequence $\{A_{\zeta}\}_{\zeta < \omega_1}$ of pairwise disjoint Borel subsets of X such that:

1
$$A_{\zeta}$$
 is invariant, and $\bigcup_{\zeta < \omega_1} A_{\zeta} = X$.

2
$$E_G^X \upharpoonright A_\zeta$$
 is Borel.

3 (Boundedness) If $A \subseteq X$ is Borel invariant and $E_G^X \upharpoonright A$ is Borel, then $A \subseteq \bigcup_{\zeta < \alpha} A_{\zeta}$ for some $\alpha < \omega_1$.

Proof.

$$A_{\zeta} = \{x : \delta(x) = \zeta\}$$

・ロト ・回ト ・ヨト

Hjorth's question

Theorem

```
For \alpha countable, the set
```

$$\mathbb{A}_{\alpha} = \{ x : [x] \text{ is } \Pi^{\mathbf{0}}_{\beta} \text{ for } \beta < \alpha + \omega \}$$

is Borel.

- 4 回 2 - 4 □ 2 - 4 □

Э

Hjorth's question

Theorem

```
For \alpha countable, the set
```

$$\mathbb{A}_{\alpha} = \{ x : [x] \text{ is } \Pi^{\mathbf{0}}_{\beta} \text{ for } \beta < \alpha + \omega \}$$

is Borel.

Proof.

This set is in fact $\{x : \delta(x) < \alpha + \omega\}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Hjorth's question

Theorem

```
For \alpha countable, the set
```

$$\mathbb{A}_{\alpha} = \{ x : [x] \text{ is } \Pi^{\mathbf{0}}_{\beta} \text{ for } \beta < \alpha + \omega \}$$

is Borel.

Proof.

This set is in fact
$$\{x : \delta(x) < \alpha + \omega\}$$
.

Corollary

For every countable α , there are either countably many or perfectly many orbits that are Π^0_β , for $\beta < \alpha + \omega$.

イロト イヨト イヨト イヨト

Э